Sabtu, 24 Maret 2018

Beberapa Monosakarida dan Penentuan Stereokimia

PENGERTIAN MONOSAKARIDA DAN CONTOHNYA
            Karbohidrat adalah molekul biologis yang mengandung unsur diantaranya karbon (C), hidrogen (H), dan oksigen (O). Karbohidrat sangat penting karena mereka memberikan energi dan bahan bakar untuk tubuh kita sehingga otak kita bisa berfungsi dengan baik dan agar otot-otot kita dapat bekerja. Bentuk paling sederhana dari karbohidrat adalah monosakarida. Monosakarida (dari Bahasa Yunani mono: satu, sacchar: gula) adalah senyawa karbohidrat dalam bentuk gula yang paling sederhana.
            Kerangka monosakarida berupa rantai karbon berikatan tunggal yang tidak bercabang. Satu diantara atom karbon berikatan ganda terhadap suatu atom oksigen, membentuk gugus karbonil; masing-masing atom karbon lainnya berikatan dengan gugus hidroksil. Monosakarida adalah karbohidrat yang tidak dapat dihidrolisis menjadi bentuk yang lebih sederhana. Monosakarida meliputi glukosa, galaktosa, fruktosa, manosa, dan lain-lain.
            Rumus umum monosakarida sesuai dengan nama karbohidrat yaitu (CH2O)n, di mana jumlah n sesuai dengan jumlah atom karbon yang dimiliki. Berdasarkan jumlah atom karbon tersebut, monosakarida dibagai menjadi beberapa bagian yaitu, triosa (C3H6O3), tetrosa (C4H8O4), pentosa (C5H12O5), heksosa (C6H12O6), dan heptosa (C7H12O7).

CONTOH MONOSAKARIDA DI ALAM
            Monosakarida adalah karbohidrat yang tidak dapat dihidrolisis menjadi bentuk yang lebih sederhana. Monosakarida meliputi glukosa, galaktosa, fruktosa, manosa, dan lain-lain.
Glukosa
Glukosa merupakan suatu aldoheksosa, disebut juga dekstrosa karena memutar bidang  polarisasi ke kanan. Glukosa merupakan komponen utama gula darah, menyusun 0,065- 0,11% darah kita. Glukosa dapat terbentuk dari hidrolisis pati, glikogen, dan maltosa. Glukosa sangat penting bagi kita karena sel tubuh kita menggunakannya langsung untuk menghasilkan energi. Glukosa dapat dioksidasi oleh zat pengoksidasi lembut seperti pereaksi Tollens sehingga sering disebut sebagai gula pereduksi
Galaktosa
Galaktosa merupakan suatu aldoheksosa. Monosakarida ini jarang terdapat bebas di alam. Umumnya berikatan dengan glukosa dalam bentuk laktosa, yaitu gula yang terdapat dalam susu. Galaktosa mempunyai rasa kurang manis jika dibandingkan dengan glukosa dan kurang larut dalam air. Seperti halnya glukosa, galaktosa juga merupakan gula pereduksi.
Fruktosa
Fruktosa adalah suatu heksulosa, disebut juga levulosa karena memutar bidang polarisasi ke kiri. Merupakan satu-satunya heksulosa yang terdapat di alam.  Fruktosa merupakan gula termanis, terdapat dalam madu dan buah-buahan bersama glukosa.Fruktosa dapat terbentuk dari hidrolisis suatu disakarida yang disebut sukrosa. Sama seperti glukosa, fruktosa adalah suatu gula pereduksi.

CIRI-CIRI UMUM MONOSAKARIDA
            Untuk mengetahui bagaimana bentuk dari monosakarida maka ada beberapa ciri umum yang akan dirincikan sebagai berikut :
  • Merupakan karbohidrat yang paling sederhana,tidak dapat dihidrolisis lebih lanjut.
  • Merupakan kristal padat yang bebas larut di dalam air, tidak larut dalam pelarut nonpolar
  • Diserap langsung oleh alat pencernaan
  • Perbedaan struktur menyebabkan sifat spesifik
  • Mempunyai rumus empiris (CH2O)n, dimana n = 3 – 8. Jumlah atom C triosa,tetrosa,pentosa dan hesosa
  • Tidak berwarna
  • Berasa manis

SIFAT DARI MONOSAKARIDA
Pada umumnya monosakarida mempunyai beberapa sifat-sifat umum yang akan di bahas beriut ini :
  1. Reaksi dengan basa dan asam
Apabila glukosa dilarutkan ke dalam basa encer, beberapa jam kemudian dihasilkan campuran yang terdiri dari fruktosa, manosa, dan sebagian glukosa semula. Sedangkan, dalam basa encer, monosakarida sangat stabil, tetapi jika aldoheksosa dipanaskan dalam asam kuat, akan mengalami dehidrasi dan diperoleh bentuk hidroksimetil furtural. Dalam bentuk yang sama, pentose juga akan berubah menjadi bentuk furtural.
  1. Gula pereduksi
Sebagian karbohidrat  bersifat gula pereduksi. Sifat gula pereduksi ini disebabkan adanya gugus aldehida dan gugus keton yang bebas, sehingga dapat mereduksi ion-ion logam. Gugus aldehida pada aldoheksosa mudah teroksidasi menjadi asam karboksilat dalam pH netral oleh zat pengoksidasi atau enzim. Dalam zat pengoksidasi kuat, gugus aldehida dan gugus alkohol primer akan teroksidasi membentuk asam dikarboksilat atau asam ardalat. Gugus aldehida atau gugus keton monosakarida dapat direduksi secara secara kimia menjadi gula alkohol, misalnya D-sorbito yang berasal dari D-glukosa.
  1. Pembentukan glikosida
Monosakarida dapat membentuk glikosida dan asetal. Jika gugus hidroksil pada sebuah molekul gula bereaksi dengan hidroksil dari hemiasetal atau hemiaketal molekul gula yang lain, maka akan terbentuk glikosida yang disebut disakarida. Ikatan ini dinamakan ikatan glikosida yang berfungsi untuk menghubungkan sejumlah besar unit monosakarida menjadi polisakarida.
  1. Pembentukan ester
Semua monosakarida atau polisakarida dapat terasetilasi oleh asam asetat anhidrida yang berlebihan membentuk O-asetil-α-D-glukosa. Gugus asetil yang berikatan secara ester ini bisa dihidrolisis oleh asam atau basa. Sifat ini sering juga digunakan untuk penentuan struktur karbohidrat. Senyawa ester yang penting dalam dalam metabolisme adalah ester fosfat.
  1. Fenilosazon dan Osazon
Monosakarida dapat bereaksi dengan larutan fenil hidrazin dalam suasana asam pada suhu 100oC, membentuk ozazon. Senyawa ini tidak larut dalam air dan mudah mengkristal. Glukosa, fruktosa, dan manosa akan menghasilkan fenolsazon yang sama, selanjutnya, akan terbentuk asazon yang berwarna, mengkristal secara khas, dan dapat digunakan untuk menentukan jenis karbohidrat.

STRUKTUR MONOSAKARIDA
            Struktur monosakarida ada yang ditulis dalam bentuk rantai lurus, ada pula dalam bentuk cincin. Monosakarida yang memiliki lima atau lebih atom karbonnya biasanya berada dalam struktur cincin, di mana gugus karbonil membentuk ikatan kovalen dengan atom oksigen dari gugus hidroksil pada atom karbon lainnya. Struktur cincin piranosa (turunan dari piran) terbentuk karena aldehida bereaksi dengan alkohol dan membentuk senyawa turunan yang disebut hemiasetal. Reaksi ini terjadi antara atom karbon aldehida no 1 dengan gugus hidroksil bebas pada atom karbon ke-5 sehingga terbentuk struktur cincin bersudut 6. Hanya aldosa yang memiliki 5 atau lebih atom karbon yang dapat membentuk cincin piranosa yang stabil. Ada pula reaksi yang membentuk cincin 5 sudut beranggotakan lima furan yang disebut furanosa. Pada ketoheksosa gugus hidroksil pada atom karbon 5 bereaksi dengan gugus karbonil pada atom karbon 2, membentuk cincin furanosa yang mengandung suatu ikatan hemiaketal. Penggambaran struktur piranosa dan furanosa karbohidrat biasanya dilakukan dengan menggunakan proyeksi Haworth. Pinggir cincin yang dekat dengan pembaca ditulis lebih tebal. Cincin piranosa terdapat dalam dua bentuk yaitu bentuk kapal dan bentuk kursi. Bentuk yang paling umum adalah bentuk kursi karena bentuk ini lebih stabil daripada bentuk kapal.

Berdasarkan jumlah atom karbon, monosakarida digolongkan ke dalam tri–, tetra–, penta–, dan heksa–. Contohnya adalah triosa, suatu monosakarida dengan tiga atom karbon. Semua monosakarida lain dianggap sebagai turunan dari triosa, khususnya D–gliseraldehida.

Beberapa monosakarida ditunjukkan berdasarkan jumlah atom karbon, seperti berikut ini.
a. Treosa dan eritrosa merupakan suatu tetrosa.
b. Ribosa, arabinosa, xilosa, dan liksosa merupakan suatu pentosa.
c. Glukosa, manosa, galaktosa, dan fruktosa merupakan suatu heksosa.

Gambar 1. Penggolongan monosakarida berdasarkan jumlah atom karbonnya.
Struktur molekul monosakarida ditulis berdasarkan pengajuan dari Emil Fischer. Kerangka karbon digambarkan secara siklik. Gugus aldehid atau keton diarahkan ke atas dan gugus –OH terakhir diarahkan ke bawah atau ke atas.
Suatu aldosa seperti glukosa membentuk cincin piranosa lingkar enam. Adapun ketosa seperti fruktosa membentuk cincin furanosa lingkar lima.

Gambar 2. Glukosa membentuk cincin enam glukopiranosa. Dua isomer berbeda pada gugus –OH yang terikat pada atom C1.
Pada struktur linear, gugus –OH dituliskan ke arah kanan untuk D–isomer atau ke arah kiri untuk L–isomer. Kedua isomer tersebut dikenal sebagai bentuk alfa (α) dan bentuk beta (β). Keduanya berbeda pada atom karbon pertama (C1) dalam hal posisi gugus –OH.
Glukosa (C6H12O6) dinamakan juga dekstrosa adalah komponen dari polisakarida seperti selulosa, pati, dan glikogen. Dalam medis, glukosa sering disebut gula darah sebab glukosa diketahui dalam aliran darah cukup melimpah.
Darah manusia normal mengandung sekitar 1 g L–1. Orang yang berpenyakit diabetes tidak dapat mengasimilasi dan mengeliminasi glukosa melalui ginjal. Jika dalam 100 mL urine terdapat sekitar 8 – 10 g glukosa maka dapat diduga orang itu berpenyakit diabetes.

Gambar 3. Fruktosa melangsungkan reaksi reversibel menghasilkan bentuk isomer α dan isomer β dari cincin lima fruktofuranosa.
            Fruktosa disebut juga levulosa atau gula buah, memiliki rumus molekul sama seperti glukosa, tetapi mengandung keton sebagai gugus fungsionalnya. Fruktosa yang terdapat pada buah-buahan dan madu merupakan monosakarida, ditemukan menyatu dengan glukosa dalam bentuk disakarida. Di antara semua sakarida, fruktosa paling manis. Fruktosa dua kali lebih manis dibandingkan dengan sukrosa dengan berat yang sama. Jika suatu sakarida dilarutkan dalam air, akan terjadi peristiwa yang disebut mutarotasi, yaitu rotasi optik dengan nilai yang khas untuk setiap sakarida. Peristiwa mutarotasi disebabkan perubahan bentuk dari isomer α menjadi isomer β atau sebaliknya.
PERMASALAHAN :
1.      Glukosa dan fruktosa memiliki rumus molekul yang sama, yaitu : C6H12O6. Tapi mengapa fruktosa 7 kali lipat lebih berbahaya terhadap sel dalam tubuh dibandingkan dengan glukosa ?
2.      Apa yang dimaksud dengan peristiwa mutarotasi? Dan apa penyebabnya?
3.      Sebutkan sumber makanan yang mengandung glukosa dan sumber makanan yang mengandung fruktosa!
Referensi :


3 komentar:

  1. baiklah saya desi ratna sari dengan nim A1C116068, disini saya akan menjawab permasalahan nomor 3, yaitu Fruktosa sendiri merupakan gula yang secara alami ditemukan dalam buah-buahan dengan derajat beragam. Berikut beberapa jenis buah-buahan yang mengandung fruktosa tinggi.

    Buah Kering
    Buah kering memiliki kandungan fruktosa tinggi, meski proses pengeringan dilakukan alami dan tidak ditambah zat tertentu. Jadi sebaiknya orang yang mengalami IBS harus menghindari atau hanya memakannya dalam jumlah kecil.

    Buah Berbiji
    Buah berbiji seperti ceri, persik, plum, dan mangga sangat tidak disarankan bagi penderita IBS. Buah-buahan ini dapat meningkatkan gejala IBS.

    Apel dan Pir
    Apel dan pir adalah dua jenis buah dengan kandungan fruktosa tertinggi. Termasuk di dalamnya semua jenis produk olahan yang terbuat dari kedua buah ini. Misalnya jus apel, saus apel, selai apel, jus apel, maupun pir.

    Melon dan Semangka
    Beberapa jenis melon dan semangka mengandung fruktosa dalam jumlah tinggi. Keduanya dapat menimbulkan efek negatif bagi mereka yang harus menjalani diet rendah fruktosa.

    Buah Tropis
    Buah tropis dimaksud antara lain mangga, pisang, kiwi, jambu biji, klengkeng, dan leci. Setiap makanan atau minuman yang mengandung buah-buahan ini juga cenderung mengandung fruktosa tinggi.
    semua bahan makanan yang mengandung karbohidrat tentu mengandung glukosa. Hanya saja, kadar gulanya berbeda-beda. Contohnya, nasi, kentang, umbi-umbian lainnya

    BalasHapus
  2. saya Demiati akan jawab pertanyaan no.2 yang mana pengertian dari mutarotasi adalah rotasi optik dengan nilai yang khas untuk setiap sakarida. yang disebabkan oleh perubahan bentuk dari isomer α menjadi isomer β atau sebaliknya.

    BalasHapus
  3. nama saya Dolla Mulyana Hranas dengan nim A1C116080 akan mencoba menjawab nomor 1, karena glukosa glukosa dapat dipecah oleh hampir semua sel dalam tubuh untuk diubah menjadi energi, sedangkan fruktosa hanya bisa dipecah oleh sel-sel hati dan mendorong proses tumorigenic lebih besar ketimbang glukosa.

    BalasHapus

Pembentukan Struktur Sekunder dan Tersier Pada Protein

Struktur protein Ada 4 tingkat struktur protein yaitu struktur primer, struktur sekunder, struktur tersier dan struktur kuartener. 1. Struk...